数学心

蔡泽禹

首页 >> 数学心 >> 数学心最新章节(目录)
大家在看报告王爷:王妃很萌很倾城 全职高手:死神归来 期待在异世界 逍遥章 隐婚999天:顾总宠妻上瘾 兽王,别吃我 战锤:以灰烬之名 快穿:男神总想撩我! 斗破:开局迎娶云韵,我多子多福 北朝纪事 
数学心 蔡泽禹 - 数学心全文阅读 - 数学心txt下载 - 数学心最新章节 - 好看的其他小说

第六百五十四章 Severi猜想

上一章书 页下一章阅读记录

弦论必须是十维的理由十分复杂,

主要的想法大致如下:

维度愈大,弦可以振动的方式愈多。

但为了制造出宇宙中的所有可能性,

弦论不只需要大数目的可能振动模式,

而且这个数目还必须是特定的数,

结果这个数只有十维时空才办得到。

寻找钻石的时候,幸运的话,你可能附带找到其他的宝石。我在1977年发表的一篇两页论文里,宣告完成了卡拉比猜想的证明。详细的证明则发表在1978年的73页论文中,在这篇文章里,我附带证明了另外五个相关的定理。

总而言之,这些意外的收获,其实源自我思索卡拉比猜想时的非常境遇:我先是想证明他的猜想是错的,后来又掉头,试图证明它是对的。非常幸运,我所有努力都没有白费,每一着错步,每条看似不通的死路,后来都被我用上了。我号称的“反例”(从卡拉比猜想导出的结论,我想证明它们是错的),因为卡拉比猜想的成立,结果连带也是正确的。因此这些失败的反例,事实上是正确的典例,很快都成了数学定理,其中有些还颇为着名呢。

这些定理中最重要的一项,又带领我们推导出“赛佛利猜想”(Severi conjecture),这是庞加莱猜想的复数版本,数学家有二十多年无法证明其对或错。

其中对小于零的情形,其简单的推论就解决了长期悬而未决的Severi猜想,复二维投影空间的复结构是唯一的,甚至任意维数复投影空间的卡勒复结构也是唯一的。

另一个匪夷所思的推论是,在任意维数的这类复流形上,存在一个奇妙的陈示性数不等式,而此前代数几何学家却只能得到复二维的情形。

不过在进行这项证明之前,我得先证明一个关于复曲面拓扑分类的重要不等式。我之所以对这个不等式感兴趣,部分原因是听到哈佛大学数学家曼弗德(David Mumford)的演讲,他当时正路过加州。这个问题是荷兰雷登大学的安东尼斯·凡德文(Antonius van de Ven)首先提出的,讨论关于凯勒流形陈式类的不等式,凡德文证明:凯勒流形第二陈氏类的8倍,不小于其第一陈氏类的平方。当时许多人相信将不等式中的8换成3,将会得到更强的不等式,事实上,大家认为3是可能的最佳值。曼弗德问的,就是能不能证明这个更严格的不等式。

这个问题是1976年9月曼弗德在加州大学尔湾分校演讲时提出的,当时刚证明卡拉比猜想的我,正好听了这场演讲。他演讲到中途,我就相当确定曾经遇过相同的问题。在演讲之后的讨论中,我告诉曼弗德自己应该可以证明这个更困难的不等式。当天回家后,我检查做过的计算,果然不出所料,自己曾经在1973年试图用这个不等式来否证卡拉比猜想。而现在,我可以倒过来,用卡拉比—丘定理来证明这个不等式。事实上我的收获更丰盛,因为运用其中的特殊情况,也就是一个“等式”——即第二陈氏类的3倍“等于”第一陈氏类的平方——来证明了赛佛利猜想。

赛佛利猜想与这个应用范围更广的不等式[有些时候被称为“波格莫洛夫—宫冈—丘不等式”(Bogomolov-Miyaoka-Yau inequality),以表彰另两位数学家的贡献]是卡拉比证明最初的主要副产品,此后还有其他应用接踵而至。

事实上,卡拉比猜想涵盖的范围比我之前提到的更宽广,其中不只包含黎奇曲率为零的情况,也包括黎奇曲率为正常数与负常数的情形。

到目前为止,还没有人能证明出正常数条件中最普遍的情况。事实上,正常数的情形,卡拉比原先的猜想并不成立,后来我提出一个新猜想,加上某个容许正常数黎奇曲率度规存在的特殊条件。

过去二十年,许多数学家(包括多纳森)对这个猜想都有相当重要的贡献,但仍未能完全将它证明。虽然如此,我倒是证明了负曲率的情况,这是我整体论证的一环,法国数学家奥邦也独立证明了这个部分。

负曲率的解决,则证实了存在着一类涵盖更广的流形,称为凯勒—爱因斯坦流形(K hler-Einstein manifolds)。这门新建立的几何学,后来有出人意料的丰硕研究成果。

在思索卡拉比猜想的直接应用上,我可说是诸事顺遂,在短期间内解决了六七个问题。

事实上一旦你知道存在某个度规,就会顺势得到许多结果。

例如你可以反过来导出流形的拓扑性质,并不需要知道度规的确切表式。然后,又可以运用这些性质去指认出流形的唯一特色。

这就好像你不需要知道星系中众星体的细节,就能辨识星系;或者,不需要知道整副牌的细节,就能推理出许多手中牌张的性质(牌数、大小、花色等)。

对我来说,这就是数学的神奇之处,比起巨细靡遗的细节齐备之后才能做推论,这样反而更能彰显数学的威力。

见到我艰苦的努力终于获得回报,或者看着他人继续向我没想到的路径迈进,都让我觉得心满意足。但尽管拥有这些好运道,还是有个想法不时在心头扯咬着我。在我内心深处,我很确定这项研究除了数学之外,在物理学中也一定有其意义,虽然我并不知道究竟为何。就某个观点而言,这个信念其实十分显然,因为在卡拉比猜想中求解的微分方程(黎奇曲率为零的情况),基本上就是真空的爱因斯坦方程,对应到的是没有背景能量或宇宙常数为零的宇宙(目前,一般认为宇宙常数是正值,和推动宇宙扩张的暗能量同义)。而卡拉比—丘流形就是爱因斯坦方程的解,就像单位圆是x2+y2=1的解一样。

当然,描述卡拉比—丘空间比圆需要更多的方程式,而且方程式本身也复杂得多,但是基本想法是相同的。卡拉比—丘方程不但满足爱因斯坦方程,而且形式格外优雅,至少我觉得有令人忘形之美。所以我认为它在物理学中必定占据着某个重要位置,只是不知道究竟在哪儿。

喜欢数学心请大家收藏:(m.wanshuwx.com)数学心万书文学更新速度全网最快。

上一章目 录下一章存书签
站内强推惊世神凰 穿越全能网红 乾元剑 娱乐:我爹是影帝 空间,万能的,痴情兵王,我的! 天帝系统:开局我成了大秦帝皇 这就是个假精灵 俏汉宠农妻:这个娘子好辣 神医娇媳:宠妻狂魔山里汉 王妃是个大魔头 爆笑宠妃:爷我等你休妻 张继在枫桥的一夜 空间农女:彪悍辣媳山里汉 通天武尊 逆鳞 逃荒小农女,大鱼大肉喂饱全家 让你代管新兵连,全成特种部队了 汉世祖 攻约梁山 签到,人在孤岛,刚自建豪华别墅 
经典收藏诸天地球大融合 领袖之证命运的齿轮 天才狂妃 我真不想当欧皇 转生,扎克的异世界之旅 从今出发 独家记忆前世 月之子的无限穿越 从自走棋到火影世界 异界之梦幻狂想曲 第五人格:萨贝达眼中的红色太阳 当文豪野犬遇上百鬼夜行 独占韶华 狗生最高境界是养龙 盗墓:青青子吟,悠悠我心 超神里的量子神棍 我在火影重建苇名 从外卖开始的奇怪日常 特工缠身:师父,要吗? 星陨战纪 
最近更新傲娇女总裁的贴身女秘书 宝可梦:直到相遇的那天 魏嬿婉重生:乾坤变 启蒙寓言故事 监控同人:平行错乱 末世仓鼠大佬莫有真感情 斗罗,做不一样的千仞雪 诡异降临我在副本找哥哥 医疗机构故事 四合院:开局房子就被惦记 不死者之王:独自走上登神之路 斗罗2:唐舞桐她姐靠凶名成神 不是反派作精吗,怎么天天撒娇 三千世界之救赎与爱恋 双面生活,商总的特别助理 十年无期 火影:从尘埃到巅峰,改写宿命 天灾行走于霍格沃茨 穿书后,我带着四个情敌东山再起 与飒游 
数学心 蔡泽禹 - 数学心txt下载 - 数学心最新章节 - 数学心全文阅读 - 好看的其他小说